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Near-optimal strategies are developed for estimating the free energy difference between 
two canonical ensembles, given a Metropolis-type Monte Carlo program for sampling 
each one. The estimation strategy depends on the extent of overlap between the two 
ensembles, on the smoothness of the density-of-states as a function of the difference 
potential, and on the relative Monte Carlo sampling costs, per statistically independent 
data point. The best estimate of the free energy difference is usually obtained by dividing 
the available computer time approximately equally between the two ensembles; its 
efficiency (variance x computer time)-’ is never less, and may be several orders of 
magnitude greater, than that obtained by sampling only one ensemble, as is done in 
perturbation theory. 

I. INTRODUCTION 

A well-known deficiency of the Monte Carlo [I, 21 and molecular dynamics 
[3] methods, commonly used to study the thermodynamic properties of classical 
systems having 1Oa to IO4 degrees of freedom, is their inability to calculate quantities 
such as the entropy or free energy, which cannot be expressed as canonical or 
microcanonical ensemble averages. In general, the free energy of a Monte Carlo 
(MC) or molecular dynamics (MD) system can be determined only by a procedure 
analogous to calorimetry, i.e., by establishing a reversible path between the 
system of interest and some reference system of known free energy. “Computer 
calorimetry” has a considerable advantage over laboratory calorimetry in that the 
reference system may differ from the system of interest not only in its thermo- 
dynamic state variables but also in its Hamiltonian, thereby making possible a 
much wider variety of reference systems and reversible paths. Often the path 
between an analytically tractable reference system and the system of ultimate 
physical interest will include one or more intermediate systems. These may be 
interesting in their own right (e.g., the hard sphere fluid), or they may be special 
systems, important only as calorimetric stepping stones, whose Hamiltonians 
contain artificial terms designed to stabilize the system against phase transitions 
[4, 51, induce favorable importance weighting [6, 71, or otherwise enhance the 
system’s efficiency as a computational tool [8-lo]. 
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Whether the calorimetric path has one step or many, one eventually faces the 
statistical problem of extracting from the available data the best estimate of the 
free energy differences between consecutive systems. Specializing the question 
somewhat, one might inquire what is the best estimate one can make of the free 
energy difference between two MC systems (i.e., two canonical ensembles on the 
same configuration space), given a finite sample of each ensemble. Section II 
of this paper derives the “acceptance ratio estimator,” a near-optimal solution of 
this estimation problem, based only on the data in the two ensemble samples (a 
special case is the estimation of the free energy difference between two ensembles 
using data from only one of them; however, it will be argued that it is usually 
preferable to gather data from both ensembles). The efficiency of the acceptance 
ratio estimator is proportional to the degree of overlap between the two ensembles. 

Section III presents a related method, the “interpolation method,” which yields 
an improved free energy estimate under an additional assumption that is often 
physically justified, namely, that the density of states in each ensemble is a smooth 
function of the difference potential. When this assumption is justified, the inter- 
polation method can yield a good free energy estimate even when the overlap 
between the two ensembles is negligible. On the other hand, when the two ensembles 
neither overlap nor satisfy this smoothness assumption, no method of statistical 
analysis can yield a good estimate of the free energy difference, and one must 
collect additional MC data from one or more ensembles intermediate between 
the two originally considered. 

Section IV compares the present methods with older methods of MC free energy 
estimation, viz, numerical integration of a derivative of the free energy, perturbation 
theory, and previous overlap methods. This section also discusses some of the 
problems of designing and sampling intermediate ensembles. 

II. THE ACCEPTANCE RATIO METHOD 

IIa. Acceptance Probabilities and Configurational Integrals 

In this section the acceptance ratio method, to be developed more rigorously 
in Sections IIb and IIc, will be discussed from a physical and qualitative point 
of view. 

In most classical systems of interest the kinetic part of the canonical partition 
function is trivially calculable; hence the problem of finding the free energy of a 
given (N, T, I’) macrostate reduces to that of evaluating the canonical con- 
figurational integral 

Q = 1 ev- uU(q, ... qdl dq, ... dqN. 
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Here U = @/kT is the temperature-scaled potential energy, a function of the 
System’s N COIIfigUI’atiOnal degrees Of freedom, q1,q2,...,qN. It iS COIIVenient 

to allow U sometimes to take on the “value” plus infinity (but never minus infinity) 
so that external constraints, such as those that define the system’s volume and 
shape, may be incorporated directly in the potential function and Q may be defined, 
as above, by an unbounded integral. With these conventions any nonsingular 
probability density p(q) may be viewed as a canonical ensemble density, determined 
by a potential of the form U(q) = const - In p(q). 

Existing methods are incapable, in general, of evaluating integrals of the form (l), 
because the dominant contribution typically comes from a small but intricately 
shaped portion of configuration space; however it is not difficult to derive useful 
formulas for the ratio between two such integrals, defined by two dzferent potential 
functions, U,, and U, , acting on the same configuration space {(ql ... qN)}. 
Equation (4), for example, to be derived presently, expresses the ratio Q,/Q, 
as a ratio of canonical averages involving the “Metropolis” function, M(x) = 
min{l, exp(-x)>. The Metropolis function, because it has the property 
M(x)/M(-x) = exp( -x), is used in the standard Monte Carlo algorithm [l, 21 
to assign Boltzmann-weighted acceptance probabilities to trial moves, a move that 
would change the (temperature-scaled) energy by A U being accepted with proba- 
bility M(d U). Here, however, we consider an unorthodox kind of trial move-one 
that keeps the same configuration (ql ... qN), but switches the potential function 
from U,, to U, or vice-versa. For each configuration, the acceptance probabilities 
for such a pair of trial moves must satisfy the relation 

M(U, - U,> exp(- U,) = M(U, - U,) exp(- U,). (2) 

Integrating this identity over all of configuration space and multiplying by the 
trivial factors Q,/Q, and Q,/Q1 , one obtains: 

= Q, s M(&I - VI) exP(- &) dq, *** dq, 
Ql (3) 

The quotients on both sides can be recognized as canonical averages, i.e., quantities 
that can be measured during ordinary MC runs on systems 0 and 1 respectively. 
Representing these averages by the conventional angle brackets, one obtains the 
desired result: 

(4) 
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The physical meaning of this formula is that a Monte Carlo calculation that 
included potential-switching trial moves (in a fixed ratio to ordinary, configuration- 
changing trial moves) would distribute configurations between the unknown U, 
and the reference U, system in the ratio of their configurational integrals. The 
potential-switching moves need not actually be carried out, however, since the 
desired ratio can be estimated more accurately simply by taking the indicated 
averages over separately-generated samples of the U,, and U, ensembles. 

Before proceeding further, a few general remarks on the scope and limitations 
of the acceptance ratio method are in order. The requirement that the two systems 
be defined by potentials acting on the same configuration space is not a serious 
limitation, since, for most pairs of macrostates one might care to compare, a rather 
trivial transformation of the coordinates (e.g., a dilation or shear) s&ices to make 
the two configuration spaces congruent. It is possible even to compare systems with 
a different number of degrees of freedom (as in the MC simulation of a grand 
canonical ensemble); the lower-order system is simply given one or more dummy 
coordinates, whose contribution to Q can later be factored out and computed 
analytically. 

Most special ensembles used in Monte-Carlo work can be expressed as canonical 
ensembles by appropriate definition of the potential function U. The (N, T, P) 
ensemble, for example, can be represented [2] by making the volume a coordinate 
and the pressure a parameter of U. Importance-weighted ensembles [6, 71 can be 
viewed as canonical ensembles defined by U functions containing additive terms 
designed to concentrate the probability density in desired portions of configuration 
space. 

The only important practical limitation on the method is that both mean 
acceptance probabilities (i.e., both averages in Eq. (4)) must be large enough to be 
determined with reasonable statistical accuracy in a Monte-Carlo run of reasonable 
duration. If only one of the acceptance probabilities is too small, it can be increased, 
at the expense of the other, by shifting the origin of one of the potential functions 
by an additive constant. Simultaneous smallness of both probabilities indicates 
that there is insufficient overlap between the U,, and U, ensembles, and, in order to 
obtain a good estimate of Q, , one must either: 

1. Find a new reference potential which exhibits greater overlap with U, . 
2. Perform additional MC calculations under one or more intermediate 

potentials, so as to form an overlapping chain between U, and U, . 
3. Use curve-fitting methods, to be discussed in Section III, to interpolate 

between the U, and U, ensembles, thereby obtaining a good estimate of the free 
energy difference in spite of the lack of overlap. 

Although Eq. (4) is not strictly correct for the (N, E, V) or (N, E, V, linear 
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momentum) ensembles sampled by molecular dynamics, in practice it often can 
be used with molecular dynamics data, owing to the close similarity (except near 
phase transitions) of the configurational distributions in the various ensembles, 
for systems having more than a few degrees of freedom. Since temperature is not 
an independent variable in a constant-energy ensemble, the temperatures used in 
defining the temperature-scaled potentials U, and U, would have to be taken from 
time averages of the kinetic energy. 

An exact microcanonical analog of Eq. (4) exists for the somewhat special case 
of two systems at the same energy E whose Hamiltonians, H,, and H1 , have equal 
“soft” parts, i.e., H,, and HI are equal wherever neither is infinite. For such a pair 
of systems the ratio of the microcanonical phase integrals is given by 

.f W&I - El dqN dPN = exp(So _ S,),k = WWo - Hdl, 
sS(H, - E) dqN dpN MHI - f&J10 ’ 

(5) 

with square brackets here denoting microcanonical phase averages. The numerator 
and denominator of Eq. (5) have a very simple interpretation: e.g., [M(H, - H,,)], 
is the fraction of points on the Ho energy surface that also lie on the HI energy 
surface. The formulation of a more general microcanonical analog of Eq. (4) is 
frustrated by the fact that, for a general pair of Hamiltonians, H,, and Z& , the 
two energy surfaces would have an intersection of zero measure. 

Returning to the canonical ensemble, it may be noted that Eq. (4) is not the most 
general formula for Q,/Q, as a ratio of canonical averages. A more general formula 
results if one includes in both the numerator and denominator an arbitrary 
weighting function. Let W(q, *** qN) be any everywhere-finite function of the 
coordinates. It then follows easily that 

e,= Q, s W ev(- U. - W dqN = ( Wexp(- WI 
Ql Ql J W ew(- ul - UO> dqN ( W ev(- W. * (6) 

Note that configurations having infinite energy under either U, or U, or both make 
no contribution to Eq. (6) so long as W is finite; henceforth, W will by convention 
be set equal to zero for all such configurations. 

Most previous direct or overlap methods for estimating free energy (to be 
reviewed in Section IV) can be viewed as special cases of Eq. (6), with particular 
forms of the potentials U, and U, and the weight function W. Equation (4), 
for example, corresponds to the choice W = exp(+min{ U,, , U,}). The next 
section (IIb) shows, by some rather lengthy statistical arguments, that the optimized 
estimator of Qo/Ql as a ratio of canonical averages differs from Eq. (4) in two 
respects: (1) the Fermi function, f(x) = l/(1 + exp(+x)), is used instead of the 
Metropolis function; and (2) the origin of one of the potential functions is shifted 
so as to (roughly) equalize the two acceptance probabilities. 
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It is also shown that, when one is free to vary the amount of computer time 
spent sampling the two ensembles, roughly equal time should be devoted to each. 

Ilb. Optimized Acceptance Ratio Estimator--Large Sample Regime 

Optimization of the free energy estimate is most easily carried out in the limit 
of large sample sizes. Let the available data consist of n, statistically independent 
configurations from the U, ensemble and n, from the U, ensemble, and let this data 
be used in Eq. (6) to obtain a finite-sample estimate of the reduced free energy 
difference dA = Al - A, = In(Q,/Q,). For sufficiently large sample sizes the 
error of this estimate will be nearly Gaussian, and its expected squre will be 

Expectation of (d Aest - dA)2 

<W2ed-2Wh ( W2 exp( -2 U& 
M M Wew- Wo12 + M Wexp(- U0)>J2 

1 1 ---__ 
n, n, 

= s ((Q&d exP(- G) -t- <Qlh> exp(- U,)) W2 exp(- U,, - U,) dqN 
[J Wed- G - W WI2 

- wd - Wnd. (7) 

By making the integral in the numerator stationary with respect to a variation of 
W at constant value of the integral in the denominator, the optimum W function 
is found: 

m, ... qN) = const x (* exp( - U,) + -$ exp( - UJP1. (8) 

Substituting this into Eq. (6) yields 

$= WA - Ul + Cl>, 
(f(U, - u, - C)), exp(+C)y Pa> 

W 

and f denotes the Fermi function f(x) = l/(1 + exp(+x)). Equation (9a) is true 
for any value of the shift constant C, but the particular value specified by Eq. (9b) 
minimizes the expected square error (Eq. (7)) when the canonical averages are 
evaluated by finite sample means, with sample sizes n, and n, . 

The magnitude, 02, of this minimum square error can be found by taking rhe 
variance of Eq. (9a), or by substituting Eq. (8) into (7); u2 can be conveniently 
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expressed in terms of n, , n, , and the normalized configuration-space density 
functions p0 and p1 : 

=.2 = <f2>rJ - <f>i + <f% - <fX 
n&f X n&f >i 

= 
(I 

wlPoPl &q-l 

nope + Wl 

"on;:1 . 

(104 

(lob) 

In Eq. (lOa) the argument offis understood to be (U, - U, - C) or (U. - U, + C) 
in the 0 and 1 expectations, respectively, with C = ln(Q&Qln,,) as specified by 
Eq. W. In Eq. (lob), p(ql .a* qN) denotes the density (l/Q) exp[- U(q, 1.. qN)]. 
Since a2 is a monotonically decreasing function of both no and n, , it follows that 
for some ii, lying between no and n, , 

2 (72 ET= = 

n [(S 
dq”)-l - 11 &WI 

PO + Pl 
(11) 

The integral in this equation is clearly a measure of the “overlap” between the 
two densities in configuration space. Equation (11) thus says that Qo/Ql can be 
determined accurately as a ratio of canonical averages by (and only by) sampling 
a number of configurations greater than the reciprocal of the overlap between 
p. and p1 . 

The optimized formula for Qo/Q, (Eq. (9a)) differs from that derived earlier 
(Eq. (4)) only in the use of the Fermi function in place of the Metropolis function, 
and in the shifting of the origin of one of the potentials by an additive constant C. 
Figure 1 shows both the Fermi and Metropolis functions along with a typical 
probability density for values of their argument x, the change in energy accom- 
panying a potential-switching move (i.e., x = U, - U, + C under U, , and 

FIG. 1. The Fermi function, f(x) = l/[l + exp(+x)], and the Metropolis function, M(x) = 
min {I, exp( -x)x are shown along with a typical probability density, p(x), for their argument. 
Plotted on the left is a typical probability density for values of the Fermi function. 
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Ul - U, - C under U,,). When the shift constant is properly chosen (Eq. (9b)), 
most potential-switching moves (like most trial moves in an ordinary MC cal- 
culation) will result in an increase in energy and hence will lie on the positive 
“tail” of thef(or M) function. The advantage of the Fermi function in estimating 
free energy differences lies in its having a softer shoulder than the Metropolis 
function. This narrows the distribution of acceptance probabilities p(f(x)), and 
makes possible a more accurate estimation of the ensemble average acceptance 
probability from a given body of data. The Metropolis function, on the other hand, 
is the better acceptance function to use in the ordinary MC algorithm for generating 
new configurations, because here one seeks to maximize the acceptance probability 
itself, without regard to its variance. The shifting of the energy origin by C serves 
to maximize the number of configurations falling near the soft shoulder of the f 
function, while minimizing the number falling far out on its tail. It should perhaps 
be pointed out that in the special case of two potentials whose soft parts are 
identical, Eq. (9a) becomes equivalent to Eq. (4) and yields no better estimate of 
Qo/Q, . 

In practice, of course, one cannot determine the optimum shift constant C 
exactly, because it depends on the unknown quantity QO/Q1 ; however a value 
sufficiently close to the optimum can be found by adjusting C until Eqs. (9a) 
and (9b) become self-consistent for the given body of data. This estimation proce- 
dure can be expressed conveniently as a pair of simultaneous equations in &est 
and C: 

AAest = In cl’f(uo - ” + ‘)I + C - ln(n,/n,) 
co V(Ul - uo - CM (124 

&test = C - ln(n,/no). Wb) 

Equation (12a) (the finite-sample analog of Eq. (9a)) estimates the free energy 
difference in terms of explicit sums over the n, configurations comprising the U, 
ensemble sample and the no comprising the U, ensemble sample; Eq. (12b) (or 
equivalently x1 = Co) is the self-consistency criterion for selecting C. 

The large-sample regime assumed in Eqs. (9)-(12) may now be expressed as a 
condition on the sums Co and x1 : namely, that for some range of C-values about 
the true C of Eq. (9b), these sums differ relatively little from their respective expec- 
tations, no( ). and n,( )1 . Under this condition the self-consistent procedure yields 
essentially an optimum estimate of AA, differing from the true value by a quantity 
of order g. This follows from the fact that the first term on the right-side of Eq. (12a) 
is a monotonically decreasing function of C with a slope of nearly - 1 and a value, 
for the correct C of Eq. (9b), within about 0 of zero. One may be sure of being in 
the large-sample regime whenever both x1 and x0 are large compared to unity, 
because the terms comprising the sums are statistically independent and all lie 
between zero and one (the large sample condition is thus equivalent to the condition 
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discussed in connection with Eqs. (10) and (1 l), viz, n, and n1 must be great enough 
to adequately sample the region of overlap between p,, and pI). 

Figure 2 shows a representative graphical solution of Eqs. (12a) and (12b) for 
four sets of simulated Monte-Carlo data drawn from the same pair of ensembles 
(the sample sizes n, = n, = 106, lay in the large sample regime, with 
Co M x1 M 200). Note that the straight line of Eq. (12b) cuts through a region 
where the four curves of (12a) differ least from each other and from the true value 
of AA. In the large sample regime the standard error of the estimate dA est 
will be less than & 1, and can be computed in the usual manner by solving Eqs. (12a) 
and (12b) for several large, independent bodies of data, as was done in Fig. 2. 
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FIG. 2. Acceptance ratio estimate of the free energy difference between two MC ensembles 
in the large-sample regime by simultaneous graphical solution of Eqs. (12a) and (12b). For a 
description of the two ensembles, and the method of sampling them, see the Appendix. The four 
curves (i-iv) plot the right side of Eq. (12a) as a function of the shift constant C for four inde- 
pendent sets of data, each consisting of l@ points randomly chosen from the 0 ensemble and 1V 
from the 1 ensemble. The slanting straight line is Eq. (12b), while the dashed horizontal line 
gives the true free energy difference AA. The mean and standard error of the four tite-sample 
estimates are 24.290 + 0.017; these are in satisfactory agreement with the true free energy diier- 
ence, 24.268, and the error (I = ho.021 predicted by E& (lob) for sample sizes n, = II~ = 
4 x IV. 

Equations (12a) and (12b) represent an estimation strategy optimized with 
respect to a given pair of large samples, with fixed sizes n, and n, . We now consider 
the allocation of computer time between the two ensembles if the sample sizes 
are not fixed beforehand, but are free to be chosen so as to minimize ~9 with respect 
to q/no at a constant total cost in computer time. Let us assume that the time 
required to compute each (statistically-independent) data point is do in the 0 
ensemble and +?I in the 1 ensemble, so that the total computing time is nolo + n,(, . 
A crude but effective rule for choosing nIlno is simply to allocate equal time to 
the two ensembles, i.e., 
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The estimation efficiency, l/[(n& + n,+$) u2], resulting from this equal-time 
allocation is at least half as great as that resulting from any other allocation. This 
follows from the fact that o2 is a monotonically decreasing function of both no 
and n, ; (i.e., even the best allocation of 1 hour of computer time between the two 
ensembles yields no better estimate than would obtained by devoting a full hour 
to each ensemble). In the special case +$, = #I = 1, the equal-time estimation effi- 
ciency is approximately one fourth the overlap integral (cf. Eq. (11)). 

The equal time rule gives a sufficiently good n&z, ratio for most practical 
situations; however, for the sake of elegance, the true optimum ratio can be 
expressed in terms of the variance of the Fermi functions by solving the variational 
equation 

61(d~2/dno) = hW2/dnl). (14) 

Explicitly differentiating Eq. (lOa) with respect to n, and n, , one obtains 

(15) 

with the argument off understood to be U, - U, - C in the 0 expectations and 
U,, - U, + C in the 1 expectations. One might worry about the implicit n-depen- 
dence that the various Fermi expectations have by virtue of the n-dependent shift 
constant C, defined in Eq. (9b). However, these implicit n-dependences have no 
effect on the derivatives of u2, because Eq. (9b) is itself the solution to the variational 
condition a$/aC = 0. Equations (9a) and (9b) also cause the denominators on 
the two sides of Eq. (15) to be equal. Thus Eq. (15) reduces to an equation in one 
unknown, defining an optimum value for the shift constant C: 

4 WMU~ - 6 - Cl1 = 6 VarLW6 - VI + CM, (16) 

with Var,, and Var, denoting the absolute variances. These variances, of course, 
cannot be estimated with much precision from finite samples of the ensembles, 
but by adjusting the sample sizes until Eqs. (12a) and (12b) can be solved self- 
consistently for the same value of C as Eq. (16), one might obtain some improve- 
ment over the equal time strategy, particularly in cases where the optimum time 
ratio is far from 1: 1. 

As noted earlier, the efficiency of estimating dA is at least half-optimal, and not 
very sensitive to the n&r0 ratio, in the neighborhood of n&z,, = &,/tI (the equal 
time rule). This can be seen in Fig. 3, which plots the log estimation efficiency 
versus the log sampling ratio for the pair of model ensembles considered earlier. 
Although the optimum n&z,, ratio is 1.8, the estimation efficiency at n&z0 = 1 
is almost (99.7%) as good. (At first it might appear that by making the costs &, 
and (I very disparate, the optimum time ratio could be displaced far from unity; 
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however this is not so. If, for example #J#, is changed from 1 to 1O4, the optimum 
nl/no ratio is indeed greatly increased as one would expect; but the optimum time 
ratio, n,&/n,/,, , changes only from 1.8 to 1.3) 

Ln h,h,) 

FIG. 3. Dependence of estimation efficiency, l/[(n, + n&9], on the nJn, ratio for the model 
ensembles described in the Appendix, assuming equal sampling costs (el = #& in the two en- 
sembles. The horizontal wings of the curve indicate the rather poor efficiency with which Al-A, 
can be estimated when only one ensemble is sampled, as in infiniteorder perturbation theory. 
The efficiency curve was calculated by exact evaluation of Eq. (lob) over the rather trivial con- 
figuration space of the model ensembles. 

Figure 3 also shows that the estimation efficiency can become very bad if one 
flouts the equal time rule by sampling only one ensemble. The poor efficiency results 
from the fact that, when only one ensemble is sampled (say the 0 ensemble), the 
acceptance ratio estimator reduces to the average of a pure exponential (cf. 
Eq. (22)), whose variance can be expressed in terms of the densities p0 and p1 as 
[.I- W/PO) 4P - llhl * This expression is less transparent than the formula 
(Eq. (11)) relating the variance of the two-ensemble estimate to the overlap integral; 
however, its qualitative meaning is that an accurate one-ensemble estimate requires 
that the sampled ensemble include all important configurations of the other 
ensemble. A good two-ensemble estimate, on the other hand, requires only that 
each ensemble include some important configurations of the other ensemble. 

IIc. Acceptance Ratio Estimates in the Small Sample Regime 
The treatment so far has been limited to the large sample regime, in which both 

sums in Eq. (12a) can be made simultaneously greater than unity. Unfortunately, 
in many cases of interest, the overlap between the two ensembles is so slight that 
even with the largest practical n, and n, this condition cannot be met. We shall now 
show that even in this small sample regime Eq. (12a) can yield a useful estimate 
of LIA, though the error bounds will be greater than f 1 and can no longer be 
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estimated from the spread among independent estimates. When either sum in 
(12a) (say C1) is small compared to unity, its most serious source of statistical 
error becomes the possibility that some important class of configurations, whose 
total ensemble probability is low (I/n, or less) but whose f values are high (near 
unity at worst), may not be sampled at all. Such failures to sample could cause 
either sum to underestimate its expectation by a quantity of order unity (corre- 
sponding errors due to ouer-sampling of high-f configurations could also occur, 
but, owing to the convexity of the log function, their effect on Eq. (12a) would 
be much less). In order to find bounds on the possible failure-to-sample errors, 
and hence on AA, we take advantage of the fact that & is a monotonically 
decreasing function of C, while Co is monotonically increasing. Therefore, by 
decreasing C to that value, C,, for which x1 becomes equal to unity, we can make 
all the failure-to-sample errors appear in the denominator of Eq. (12a) and obtain 
a value, &test+, which may overestimate, but is unlikely to seriously under- 

Ln I, c’ c co Ln IO 

C 

FIG. 4. Acceptance ratio estimate of the free energy difference in the small-sample regime. 
The upper pair of curves show the construction of the optimum estimate dAest by graphical 
solution of Eqs. (12a) and (12b), from two small samples (n, = n, w 20) of the pair of ensembles 
described in the Appendix. The lower pair of solid curves show the construction of the upper and 
lower estimates, dAest+ and dAest-, by Eqs. (17a) and (17b). The dashed curves show the log 
expectations, In (Co> = In[nO(f(UI - U,, - C)>,] and ln<C> = ln[nI(f(Uo - U, + C)),], 
which are closely approximated by the observed log sums as long as the latter are greater than 
unity, but are poorly approximated at C values for which the log sums are less than unity. 



MONTE CARLO FREE ENERGY ESTIMATION 257 

estimate, the true free energy difference dA. The construction of this upper 
estimate and the corresponding lower estimate, &est--, is shown in Fig. 4. 
The computation of error bounds in the small sample regime may be summarized: 

&test- = R12a(C,,) 5 dA 5 R12a(C,) = &test+, (174 

where R12a(C) denotes the right side of Eq. (12a), and C,, and C, are defined by 

c MU1 - UC - cc)l = 1 = 1 {f(U, - u, + Cl)}. (1W 

Parenthetically it is interesting to note that the right side of Eq. (IZa), which would 
be independent of C in the large-sample limit, here decreases with a slope of about 
-1 throughout the range where both sums are much smaller than unity. This is 
necessarily so because, under these conditions, neither sum can receive contri- 
butions except from the nearly exponential positive tail of the f function. The 
self-consistent estimate &test obtained by solving Eq. (12a) with (12b) therefore 
lies about midway between the upper and lower bounds computed by Eq. (17). 
It is still the best estimate of LA in the sense that it equalizes the damage that would 
be done by a unit failure-to-sample error in the numerator or the denominator 
of Eq. (12a). 

IId. Practical Considerations in Using Acceptance Ratio Methods 
In using Eqs. (12) and (17) with real MC data account must be taken of the fact 

that successively generated configurations of a Markov chain are not statistically 
independent, but on the contrary highly correlated. Each of the sums, Co and x1 , 
and the numbers no and n1 , must therefore refer to a subset of configurations, 
chosen from the chain so infrequently as to be uncorrelated, or else be defined in 
terms of the whole chain as follows: 

C = 7-l C ; n = 7-‘nwc . 
WC 

Here CWc denotes a sum over the whole chain, having nwc configurations, and T is 
an empirically estimated autocorrelation time of the Markov chain with respect 
to values of the f function (This autocorrelation time can be defined as the large 
k limit of the quantity k * Varlf(k)]/Varlf], where f(“) denotes the mean of k 
consecutivefvalues. Clearly T can be estimated accurately only if it is considerably 
shorter than the total chain length nwc). The cost, 4, of a statistically independent 
data point, discussed in connection with Eqs. (13~(16), would be similarly defined 
as T times the computer time required to make one MC move. 

Another practical note: although the evaluation of the sums in Eq. (12a) could 
in principle be done after the MC data (typically a Markov chain of several million 
configurations) had been generated, it is inconvenient to store all this data. A 

.581/22/z-9 
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better approach would be during the run to accumulate values of x,, and x1, 
using a mesh of C values sufficiently fine to permit accurate graphical solution of 
Eqs. (12a) and (12b) at the end of the run. Alternatively, one could store a pair 
of histograms, h,(AU) and h,(flU), of the values of the difference potential 
d U = U, - U,, , observed while sampling the 0 and 1 ensembles, respectively. 
The interval width of the histograms need be no smaller than the desired precision 
of estimating &I, and they can be summed over easily at the end of the runs to 
evaluate Eq. (12a). Such histograms are also useful in their own right, in the inter- 
polative method for estimating dA to be discussed in the next section. 

The acceptance ratio method is at its best when the overlap between the two 
ensembles, as defined by the integral in Eq. (ll), is not too small, e.g., in solid 
state vacancy calculations [8, lo] where the difference potential, U, - U,, , depends 
strongly on only a few atomic coordinates. It is more common for the difference 
potential to depend strongly on all the coordinates, resulting in an overlap many 
orders of magnitude less than unity. The two data histograms, h,(d U) and h,(d U) 
will then be separated by a wide gap (cf. Fig. 5) that cannot be filled in by 
any reasonable amount of additional sampling of either ensemble, and the 
acceptance ratio method (Eq. (17) in particular) will yield only the rather crude 
conclusion that the true free energy difference dA is somewhere between max{d U>, 
and min{d U}, . 

I;,x- 
C 

AU- 

-l 

FIG. 5. Histograms of values of dU = U, - U,, , ho representing a typical set of AU values 
sampled from the 0 ensemble, and h1 a typical set sampled from the 1 ensemble. In the gap between 
the two histograms are a pair of complementary Fermi functions f0 = f(AU - C) and fi = 
f(C - AU) whose origin can be shifted to the left or right, but whose widths are insufficient to 
achieve good overlap of fO with ho , and fi with h1 , simultaneously. 

The estimate of dA can be considerably improved if, as is often the case, the 
two histograms are sufficiently smooth to justify extrapolating them into the gap 
region of the A U spectrum, from which no data have been collected. The following 
section will deal with this method of estimating AA, which is no longer a pure 
acceptance ratio method, because it is based on the additional assumption that the 
A U spectrum is smooth even where no data have been collected. 

When the smoothness assumption is not justified, i.e., when the data histograms 
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are ragged as well as widely separated, an improved estimate of AA can be obtained 
by using the acceptance ratio method in a multistage manner, with data collected 
from a chain of intermediate ensembles extending from U,-, to U, . 

III. INTERPOLATION OR CURVE-FITTING METHOD 

This section concerns the estimation of A4 from histograms of AU values, 
h&l U) and h&l U), which are smooth but may be separated by a gap wide com- 
pared to kT. This situation is likely to arise when the difference potential depends 
strongly but more or less equally on many coordinates, e.g., when U, and U, 
represent a condensed system of many identical atoms interacting via one pair 
potential in the U, system and another in the U, system. If one is willing to infer 
from the histograms’ smoothness that the reduced density-of-states functions 
p&l U) and p&l U), which the histograms approximate, extend smoothly into the 
gap region, one can obtain a much better estimate of A4 than could be obtained 
from the acceptance ratio method alone. 

This approach is less risky than it might first appear, and in fact is more akin 
to interpolation than to extrapolation, because p,, and p1 are not independent: 

Pl(4 = <WI - Uo - 4h = exp(& _ $. 
P&4 (WI - ull - x)>o 

, (19) 

thus it is a matter of finding a single function (p. , say) which fits both histograms, 
while satisfying the normalization constraints 

and 
s Co p&lU)ddU = 1, 
--m (204 

Jm p&lU)ddU = Jm p&lU)exp(dA - AU)ddU = 1. W’b) --m --m 

This can be done conveniently by expanding In p. as a polynomial in d U and 
performing a least-squares fit of the expansion coefficients, along with AA, to the 
histogram data, subject to the normalization constraints. The adequacy of the 
polynomial approximation, as well as the range of plausible AA values, can be 
judged by chi-square tests. 

Estimation of AA also can be performed graphically (cf. Fig. 6), by plotting the 
two functions 

--gAu +lm, W) 
and 

-k&AU +lnp, (21’4 
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versus LIU on the same graph. Each function is plotted (solid curves) over the 
range of AU values for which it can be accurately estimated from the histogram 
data. By virtue of Eq. (19), the two functions are parallel, differing only by the 
unknown additive constant AA; hence, in order to estimate AA, one need only 
find a plausible parallel extrapolation (dashed curves) of the two functions into 
the range of AU values corresponding to the gap between the two histograms. 
Probably the easiest way to do this is to cut the graph in half vertically and slide 
the right half up or down until it can be smoothly joined onto the left half by some 
plausible extrapolation. The range of vertical shifts for which this can be done is 
then the range of plausible A4 values. In Fig. 6 this range can be seen to be about 
d-4 = -85.5 & 2.5, which is considerably narrower than the gap between the 
two histograms. 

Clearly the interpolation method is at its best when the data histograms are 
smooth and significantly broader than kT (kT = 1 in the reduced units of AU), 

-120 -loo -80 -60 -40 
AU 

FIG. 6. The curve-fitting method of free energy estimation (cf. Eqs. (21a) and (21b)), applied 
to data of Valleau and Card [17]. The U, system here consisted of 200 charged (lOO+ and lOO-) 
hard spheres at a fixed temperature and volume; the U, system was the same, except that the 
spheres were uncharged. The left and right solid curves in the present figure were obtained, 
respectively, from the left and right probability density curves of Valleau and Card [17, Fig. 21 
(omitting the tails where the density was less than one tenth maximum) by: scaling the energy to 
units of kT, taking the logarithm, and adding +&lU and -&lU, respectively. Their figure also 
includes a middle curve, corresponding to an intermediate ensemble which they used to bridge 
the gap between the two outer curves. With the help of this intermediate ensemble, they estimated 
dA to be -85.60 f 0.58 (cf. [17, Table I]. As the present figure suggests, the outer curves are 
smooth enough to yield a fairly good estimate of AA (about -85.5 f 2.5) by interpolation 
across the gap, without help from the intermediate ensemble. 
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and separated by a gap not much broader than the histograms themselves. Under 
these conditions much information about the shape of p,, and p1 in the overlap 
region can be inferred from data points lying far outside that region, data points 
which contribute hardly anything to the acceptance probabilities on which the 
method of the previous section is based. From this it can be seen that when two 
smooth histograms overlap very slightly (i.e., overlap integral in Eq. (11) of order 
l/E), the interpolation method will still be an improvement over the straight 
acceptance ratio estimator. However, the more the two histograms overlap, the 
less important it becomes to guess the shape of the reduced density-of-states 
functions, p,, and p1 , and, in the large-overlap limit (overlap integral ml), inter- 
polation does not improve the estimate at all. 

On the other hand, when the gap between h, and h, is excessively wide compared 
to the width of the histograms themselves, accurate interpolation becomes difficult, 
and it is best to use the interpolation.metbod in a multistage manner, using MC 
data collected under one or more intermediate potentials, e.g., U, = U, + 
X(U, - U,>; 0 < A < 1. This linear form of the intermediate potential is con- 
venient because it allows all the In p&l U) data to be plotted on the same graph 
and fitted to the same polynomial, but it may be inferior to the more general 
intermediate potentials discussed in Section IVc. 

IV. DISCUWON 

In this section the acceptance ratio and interpolation methods of Sections II 
and III are compared with other methods of free energy estimation, viz, pertur- 
bation theory, numerical integration of a derivative of the free energy, and previous 
overlap methods. 

IVa. Perturbation Theory 

Perturbation theory [l 1, 121, which estimates the free energy of the U, system by 
extrapolation from the U, system, can be viewed as the limiting case of the accep- 
tance ratio method in the absence of any data from the U, system. In this limit 
(i.e., n, -+ 0) Eqs. (9a) and (9b) reduce to 

Al - A, .= -ln(exp(U, - Ul)& (22) 

an infinite-order perturbation formula [ 131 which .is exact, provided there are no 
configurations for which U, is infkite but U, .is finite. To obtain finite-order 
formulas, one assumes the potential U to depend on a continuous parameter 
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X in such a way that as X is varied from 0 to 1, U passes smoothly from U, to U, . 
The potential U, in Eq. (22) then can be expanded in a Taylor series about U, : 

A, - A, = -ln(exp[- (W/L%)-(@U/iW)/2 - *.+])o 

= wvml 

+ H<a2w~2>o - <w/w2>, + (@wwcJ21 (23) 
+ . . . 

= aA/ah + * a2Ajah2 + --, 

where all the derivatives with respect to h are evaluated in the U,, ensemble, at 
h = 0. The expansion is usually truncated at second order because the statistical 
uncertainty in measuring the higher derivatives, by a MC run of reasonable 
duration, is typically so great that they contribute only noise to the infinite-order 
formula (Eq. (22)). The simplest perturbation formula results by taking 
U, = U, + h AU, in which case %U/aX2 = 0 and NJ/ah = AU; Eq. (23) then 
expresses AA in terms of the mean and moments of AU, as measured in the 
reference system. 

Alternatively, the acceptance ratio and curve fitting methods of Sections II 
and III may be viewed as double-ended, interpolative counterparts of ordinary 
extrapolative perturbation methods of infinite (Eq. (22)) and finite (Eq. 23)) 
order, respectively. The assumption of smoothness of the density-of-states function, 
on which the curve-fitting method is based, is then a less restrictive counterpart 
of the assumption that higher-order terms in Eq. (23) are negligible. Double-ended 
methods have the advantage of being able to set both upper and lower bounds on 
the free energy difference A, - A,, . The crudest of these bounds is the so-called 
Gibbs-Bogoliubov inequality [14], 

(u, - U,), < Al - A, < <U, - UJ, 7 (24) 

which follows, via the convexity of the log function, from Eq. (22) and its analogue 
with U,, and U, interchanged; more subtle bounds, e.g., Eq. (17), are discussed in 
Sections II and III. 

In an ordinary single-ended perturbation treatment, on the other hand, no 
data is collected from the U, ensemble and only the right half of Eq. (24) can be 
used. One therefore cannot rule out the possibility of seriously overestimating 
A, - A,, due to a failure to sample important configurations in the U, ensemble. 
Assurance that this hind of error has not occurred must come from specific 
knowledge of the potentials, or from independent conkmation of the properties 
of the U, system. The notably successful perturbation theory of liquids [12,15, 161, 
whose reference system is the hard sphere fluid, was confirmed in this manner. 
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The perturbation theory of liquids also illustrates the chief strength of single- 
ended perturbation methods, namely, the possibility of using a single reference 
system to compute the properties of many different U, systems, without having 
to collect MC data on each of these separately. It should be noted, however, that 
when there is any doubt about the rapid convergence of an extrapolative pertur- 
bation from U,, data, the estimate of A, - A, can be considerably improved, 
usually without much cost in computer time, by collecting a small amount of 
MC data on the U, system, then using a double-ended method. Indeed, whenever 
the second-order perturbation term differs significantly from zero, the two 
ensembles being compared are probably sufficiently different to warrant sampling 
both of them. The gain in estimation efficiency made possible by sampling both 
ensembles instead of only one is suggested in Fig. 3. 

IVb. Numerical Integration 

This method estimates the free energy difference Al - A, by numerically 
integrating the derivative aA/ah = (XJ/aA), which is measured by equilibrium 
MC calculations at a mesh of values of the parameter h between 0 and 1. The most 
commonly performed integration is of pressure versus volume [4, 51; however, 
the method can be used to compute the free energy change attending any con- 
tinuous deformation [8] of the potential, boundary conditions, or other parameters 
defining the MC macrostate. The integration method as ordinarily practiced is 
less than optimal because it ignores the information which each MC run provides 
about higher derivatives of the free energy (e.g., the isothermal compressibility); 
however, this information may be of poor statistical quality. Ideally each estimated 
derivative of A, at each mesh point, should be given a weight inversely proportional 
to its estimated standard error. Probably the easiest way to achieve this correct 
weighting of information is to use the acceptance ratio or interpolation methods 
in a multistage manner, to estimate J @A/ah) dh between consecutive mesh points. 

When information on higher derivatives is included it is clear that perturbation 
theory and the interpolation method of Section III are special cases of integration, 
with one or two mesh points, respectively. The number of mesh points actually 
needed depends on the smoothness of aA/ax as a function of A, and on the ease 
and precision with which the derivatives can be estimated at each mesh point. 
In typical applications, where five to ten mesh points are used, numerical integration 
can determine A, - A, when the unknown and reference ensembles are too 
different to be compared by any method not using intermediate ensembles. On 
the other hand, when the 0 and 1 systems are similar enough to be compared 
directly, the generation of many intermediate ensembles, each of which must be 
allowed to equilibrate before representative data can be collected, is tedious and 
may be wasteful of computer time. 
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IVc. Previous Overlap Methods 

Most previous overlap methods for determining free energy differences can be 
regarded as special cases of the acceptance ratio method, with particular forms of 
the potentials U,, and U, and of the weight function Win Eq. (6). Perhaps the most 
common special case is the comparison of a pair of systems, one of which is 
restricted to a subset of the configurations accessible to the other. In other words, 
the difference potential dU = lJ, - U, is a hard function, taking on only the 
values zero and plus infinity. With such a pair of potentials, one of the acceptance 
probabilities in Eq. (4) becomes identically unity, while the other is simply the 
fraction of microstates in the less restricted ensemble belonging to the more 
restricted ensemble. In what was probably the first application of an overlap method 
to a realistic system, McDonald and Singer [9] sampled a nested set of ensembles, 
defined by a decreasing sequence of upper bounds on the total energy of a gaseous 
Lennard-Jones system, and obtained the unnormalized density of states as a 
function of energy over a wide range of energies, from which they were able to 
compute the thermodynamic properties of the gas over a wide range of temperature. 

Such nested sets of hard constraints can be used to restrict a MC system to any 
desired region of configuration space, and to determine the spontaneous proba- 
bility of occupancy of that region in the absence of the constraints. In a molecular 
dynamics calculation, analogous constraint terms in the Hamiltonian can be used 
to sample trajectories passing through an arbitrary region of phase space, and to 
estimate the spontaneous frequency of such passages in an unconstrained 
system [lo]. 

Apparently the first overlap calculation of a free energy difference between two 
systems whose potentials had differing “soft” parts was that of Valleau and Card 
[17]. These authors, interested in determining the thermodynamic properties of 
a fluid of charged hard spheres as a function of temperature, compared systems 
whose U differed by a constant factor, i.e., systems having the same unscaled 
potential but different temperatures. Their somewhat complicated procedure for 
for estimating dA (cf. [17, Appendix]) can be recognized as accomplishing the same 
result, with somewhat less statistical efficiency, as the Fermi-function weighting 
used in the acceptance ratio method of Section II. By emphasizing the importance 
of the density-of-states functions, p&l U) and p,(d U), these authors adumbrated 
the interpolation method of Section III. 

In the same paper Valleau and Card pointed out the possibility of using 
a specially tailored bridging ensemble, designed to have significant overlap with 
both the unknown and reference ensembles, in place of the many intermediate 
ensembles ordinarily used in the numerical integration method. In principle it is 
always possible to define such a bridging ensemble, no matter how different U, 
and U, may be. This may be done, for example, by defining the bridging potential 
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U, , as an appropriately weighted log mean exponential of a sequence of over- 
lapping potentials U,, , extending between U, and U, , 

UB = --In i wA exp(- U,), 
A=0 

the discrete weights w, being chosen to approximate exp(A,). By using a continuous 
weight function w(X) one can even define a bridging ensemble whose density of 
states is perfectly flat over the entire relevant interval of the A U spectrum, but to 
guess such a weight function would be tantamount to guessing the function po(d U) 
over the same interval. Torrie, Valleau, and Bain [6] used discretely weighted 
bridging ensembles to pass between an unconstrained hard sphere fluid and a single 
occupancy fluid (no two particles allowed in the same Wigner-Seitz cell) in a few 
sampling stages, thereby avoiding the long pressure-volume integration by which 
the communal entropy is usually estimated. Unfortunately, the bridging ensembles 
exhibited such long autocorrelation times (cf. Eq. (18)) that the hoped-for gain 
in computational efficiency was not realized. The bridging system, in other words, 
diffused much too slowly between the part of configuration space overlapping 
with U, and the part overlapping with U, . In later work, Torrie and Valleau [7] 
obtained much better performance using continuously weighted bridging ensembles 
to estimate the free energy of a 32 particle Lennard-Jones fluid relative to that 
of the corresponding purely repulsive inverse twelfth power system. The difference 
in diffusion rates obtained in these two experiments probably is due in part to the 
superiority of a continuous weighting, but may also reflect the many-body character 
of the structural rearrangements involved in accommodating to the single- 
occupancy constraint. In difficult cases like the communal entropy calculation, 
some improvement in diffusion through a given bridging ensemble might be 
obtained by modifying the MC transition algorithm used to sample it (infinitely 
many transition algorithms, with different rates of diffusion through configuration 
space, can be used to sample the same canonical ensemble). So far almost all MC 
calculations have used simple transition algorithms in which only one particle 
is moved at a time, and trial moves are symmetrically distributed in direction. 
More efficient diffusion in the desired direction might be obtained by making 
trial moves preferentially parallel and antiparallel to the local gradient of the 
difference potential. 

Overlap methods using a bridging potential of the form of Eq. (25) bear a certain 
similarity to numerical integration. Under a bridging potential, the system diffuses 
freely back and forth between the U, and U, parts of configuration space; in 
numerical integration, a series of intermediate MC runs is made, and the system 
is forced to diffuse, by the increment in the integration parameter, as each successive 
run equilibrates. Given a particular MC transition algorithm, which limits the 
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diffusion rate, numerical integration and bridging ensembles may be equally 
efficient statistically, if the higher-derivative information provided by the 
integration runs is taken into account. 

V. CONCLUSION 

The problem of free energy estimation can be broken into three parts: 

1. what reference and (possibly) intermediate ensembles to use; 
2. what MC transition algorithms to use for sampling the ensembles; and 
3. how best to estimate the free energy from the resulting data. 

The acceptance ratio and interpolation methods (developed in Sections II and 
III, respectively) offer a fairly complete solution to the third subproblem, viz, 
optimally estimating the free energy difference between two canonical ensembles 
given a finite MC sample of each (or, more generally, given MC routines able to 
sample each at some tied cost per statistically independent data point). A good 
estimate can be arrived at if the ensembles being compared 

1. exhibit significant overlap, allowing the acceptance ratio method of 
Section II to be used; or 

2. are sufficiently similar that the density of states in each ensemble is a 
smooth function of d U = U, - U, , allowing the interpolation method of 
Section III to be used. 

In either case it is dangerous not to sample both ensembles, unless one is known 
to include all important configurations of the other. When the two ensembles 
neither overlap nor satisfy the above smoothness condition, an accurate estimate 
of the free energy cannot be made without gathering additional MC data from one 
or more intermediate ensembles. 

The first two subproblems are much less well understood than the third. The 
choice of a reference ensemble is more a matter of physics than of statistics, and 
it is probably best made on an individual, empirical basis. On the other hand the 
problems that arise in designing efficient bridging ensembles and transition algo- 
rithms to sample them appears to be the manifestation, in Monte Carlo work, of 
a general difficulty in the numerical simulation of systems with many degrees of 
freedom-the problem of moving efficiently through a complicated, labyrinthine 
configuration space. The problem arises whether one wishes to study the system 
dynamically (where it makes itself felt as a disparity of time scale between the 
phenomena of interest and the time step needed to integrate the equations of motion 
[18]), or statistically (as in Monte Carlo work), or merely by seeking the global 
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energy minimum in a space filled with steep-sided curving valleys, saddle points, 
and spurious local minima [19, 201. Judging from results in these other fields, the 
problem may be partly alleviated by transition algorithms that make intelligent 
use of local anisotropy information, but some complicated systems will remain 
intrinsically sluggish and hard to simulate. 

APPENDIX: MODEL ENSEMBLES 

The acceptance ratio estimators of Sections IIb and IIc were tested using a pair 
of simple model ensembles, defined on a discrete configuration space having only 
23 states. Because of the trivial configuration space the ensembles could be sampled 
by a simple Poisson routine (rather than by a Markov chain) and the free energy 
difference, Fermi expectations, and all other quantities of interest could be cal- 
culated exactly, for convenient comparison with the estimates under study. 
These estimates were obtained by applying the estimators (e.g., Eqs. (12a) and 
12b)) to finite random samples of the two ensembles. The defining properties of 
the ensembles are given in Table I. 

TABLE I 

State AU --Inh --InP, State AU --In PO --InP, 

% 4 2 26.352 30.352 6.084 8.084 n m 28 26 . 7.352 5.352 9.084 9.084 

i 6 8 22.352 18.352 4.084 2.084 0 

P 
30 32 4.352 2.352 10.084 10.084 

; 10 12 15.352 13.352 1.084 1.084 4 r 34 36 1.352 1.352 11.084 13.084 
g 14 12.352 2.084 s 38 1.352 15.084 
h 16 11.352 3.084 t 40 2.352 18.084 
i 18 11.352 5.084 u 42 4.352 22.084 

j 20 10.352 6.084 V 44 6.352 26.084 
k 22 9.352 7.084 W 46 8.352 30.084 
I 24 8.352 8.084 

Al -A0 is 24.268; overlap (integral in Eq. (11)) is 1.2 x BP*. 
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